
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Information
Systems School of Information Systems

11-2019

MAP-Coverage: A novel coverage criterion for testing thread-safe MAP-Coverage: A novel coverage criterion for testing thread-safe

classes classes

Zan WANG

Yingquan ZHAO

Shuang LIU

Jun SUN
Singapore Management University, junsun@smu.edu.sg

Xiang CHEN

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
WANG, Zan; ZHAO, Yingquan; LIU, Shuang; SUN, Jun; CHEN, Xiang; and LIN, Huarui. MAP-Coverage: A
novel coverage criterion for testing thread-safe classes. (2019). Proceedings of the 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE 2019), San Diego, California, United
States, November 10-15. 722-734. Research Collection School Of Information Systems.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4964

This Conference Proceeding Article is brought to you for free and open access by the School of Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Information Systems by an authorized administrator of Institutional Knowledge at
Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4964&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4964&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Zan WANG, Yingquan ZHAO, Shuang LIU, Jun SUN, Xiang CHEN, and Huarui LIN

This conference proceeding article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/4964

https://ink.library.smu.edu.sg/sis_research/4964

MAP-Coverage: a Novel Coverage Criterion for
Testing Thread-Safe Classes

Zan Wang
College of Intelligence and Computing

Tianjin University, China
wangzan@tju.edu.cn

Jun Sun
School of Information Systems

Singapore Management University
junsun@smu.edu.sg

Yingquan Zhao
College of Intelligence and Computing

Tianjin University, China
zhaoyingquan@tju.edu.cn

Xiang Chen
School of Information Science and Technology

Nantong University, China
xchencs@ntu.edu.cn

Shuang Liu*

College of Intelligence and Computing
Tianjin University, China

shuang.liu@tju.edu.cn

Huarui Lin
College of Intelligence and Computing

Tianjin University, China
linhuaruitju@tju.edu.cn

Abstract—Concurrent programs must be thoroughly tested, as
concurrency bugs are notoriously hard to detect. Code coverage
criteria can be used to quantify the richness of a test suite
(e.g., whether a program has been tested sufficiently) or provide
practical guidelines on test case generation (e.g., as objective
functions used in program fuzzing engines). Traditional code
coverage criteria are, however, designed for sequential programs
and thus ineffective for concurrent programs. In this work, we
introduce a novel code coverage criterion for testing thread-safe
classes called MAP-coverage (short for memory-access patterns).
The motivation is that concurrency bugs are often correlated
with certain memory-access patterns, and thus it is desirable to
comprehensively cover all memory-access patterns. Furthermore,
we propose a testing method for maximizing MAP-coverage. Our
method has been implemented as a self-contained toolkit, and the
experimental results on 20 benchmark programs show that our
toolkit outperforms existing testing methods. Lastly, we show
empirically that there exists positive correlation between MAP-
coverage and the effectiveness of a set of test executions.

I. INTRODUCTION

Concurrency bugs are notoriously hard to detect and de-

bug [2], [15], and therefore, concurrent programs must be

thoroughly tested. Given a test suite for a concurrent program,

the question is: how do we systematically measure the richness

of the test suite? For sequential programs, this question has

been answered in multiple ways. In the setting of black-box

testing where the specification of the program is available, we

can measure the quality of a test suite based on its coverage

of the specification. For instance, given a specification in the

form of use cases, we can measure the percentage of use

cases that have been covered by the test suite. In the setting

of white-box testing, a rich family of code coverage criteria

has been proposed and adopted in practice, e.g., statement

coverage, branch coverage, and path coverage. Such code

coverage criteria not only facilitate measuring the richness

of a test suite but also provide guidelines for automatic test

generation [48].

*corresponding author

Existing code coverage criteria are however mostly de-

signed for sequential programs, and therefore, ineffective

for concurrent programs. Recently, there have been several

attempts on designing new coverage criteria for concurrent

programs. For instance, Taylor et al. [38] pioneered a hierarchy

of concurrency coverage criteria. Bron et al. [3] presented

coverage metrics that are useful for human developers to create

concurrent tests. The latest study is that Choudhary et al. [6]

proposed a coverage metric which measures the percentage

of method pairs in a thread-safe class covered by a test

suite. They further proposed a test generation method called

CovCon, which aims to achieve high method-pair coverage.

The results showed that CovCon outperforms previous related

studies on a set of concurrent benchmark programs.

In this work, we propose a new coverage criterion for

concurrent programs called MAP-coverage (short for memory-

access pattern). Unlike previously proposed criteria, MAP-

coverage measures the richness of a set of test executions
instead of a set of test cases. A test execution is the sequence

of atomic steps executed by a test case (i.e., a program under

testing which sets up multiple threads and provides inputs

for each method call) with a particular thread interleaving.

Because the same test case may behave very differently with

different thread interleavings, we conjecture that a measure-

ment over a set of test executions would be more accurate in

capturing what behaviors of a concurrent program have been

covered. Unlike existing approaches on measuring coverage

of thread-interleaving [39], MAP-coverage measures thread

interleaving coverage in a highly abstract way. That is, MAP-

coverage abstracts test executions using memory-access pat-
terns and measures what memory-access patterns are covered.
A memory-access pattern captures a pattern of how a shared

variable is accessed by multiple threads. It has been shown that

memory-access patterns are often associated with the essence

of multi-threaded bugs [27], and, furthermore, concurrency

bugs can often be reduced to one or more of a set of 17

generic memory-access patterns [40].

We propose a testing method called MAPTest, which aims

722

2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE)

978-1-7281-2508-4/19/$31.00 ©2019 IEEE
DOI 10.1109/ASE.2019.00073

to achieve high MAP-coverage. MAPTest works as follows.

Given a class which is supposed to be thread-safe, it first

automatically identifies all mutable shared state variables (in-

cluding those which can be accessed through de-referencing).

Next, MAPTest statically analyzes every public method in

the class to identify the variables which are read/written by

each method. Afterwards, MAPTest generates test cases which

can potentially cover certain memory-access patterns. The

test cases are then automatically instrumented and executed

with controlled thread interleaving, while MAPTest monitors

the memory-access patterns which are covered by the test

executions. After that, MAPTest generates new test cases

which are likely to cover those uncovered memory-access

patterns. The process continues until a bug is discovered or

a testing budget is exhausted. We remark that MAPTest is

further integrated with the work in [6] to use the method-pair

coverage as a heuristic in generating test cases.

MAPTest has been implemented in Java and evaluated on

20 Java classes, including all programs evaluated with Cov-

Con [6]. The results showed that MAPTest can successfully

detect thread-safety violations in all 20 programs. Compared to

CovCon, MAPTest detected the bugs using less time on most

of the test programs, i.e., with an average speedup of 17x

and a maximum speedup of 193x. Furthermore, MAPTest’s

performance is consistent across different runs, though there

exists randomness in this method. The results also show

MAPTest is effective in achieving high MAP-coverage. Lastly,

we conduct an empirical study to measure the correlation

between MAP-coverage and bug detection capability of a set

of test executions. The results show that they are correlated

and are more so than the method-pair coverage.

In short, we make the following contributions in this work.

First, we propose a new coverage criterion for concurrent

programs called MAP-coverage. Second, we develop a testing

method called MAPTest which aims to achieve high MAP-

coverage. Lastly, we implement MAPTest and empirically

show that MAPTest is effective in revealing concurrency bugs.

The remainders of the paper are organized as follows.

In Section II, we define the problem to be addressed. In

Section III, we present details of MAP coverage. In Section IV,

we show how MAPTest works. MAPTest is evaluated in

Section V. We review related work in Section VI and then

conclude in Section VII.

II. PROBLEM DEFINITION

In this section, we define our problem. The input to our

approach is a thread-safe class cl . A class is thread-safe if

it behaves correctly when multiple threads are allowed to

access methods in the class concurrently without additional

synchronization or other coordination on the part of the calling

code [13]. In this work, correctness refers to the absence of

data races and atomicity violations. Without loss of generality,

we assume class cl is composed of a set of mutable (instance
or static) variables V and a set of public methods M . Each

method m ∈ M takes an optional sequence of input param-

eters, and accesses some variables in V for either reading or

1. public abstract class AppenderSkeleton ... {
2. protected Priority th;
3. public boolean

isAsSevereAsThreshold (Priority priority) {
4. return ((th == null) ||
5. priority.isGreaterOrEqual(th))
6. }
7.
8. public void setThreshold(Priority threshold) {
9. this.th = threshold;

10. }

Fig. 1: An example class

writing (which includes reading). We use Rm (and Wm) to
denote the set of variables read (and written) by method m.

For example, Fig. 1 shows a class from Log4j1 which is

supposed to be thread-safe. For the sake of space, only two

methods are shown. Using MAPTest, we identify a previously

unknown bug in the class which intuitively can be explained

as follows. At line 4, method isAsSevereAsThreshold checks

whether th is null or not and returns true if it is. Otherwise,

priority is compared with th at line 5. If it so happens that

after line 4 is executed and before line 5 is executed, another

thread executes method setThreshold and sets th be to null, a
NullPointerException is generated when line 5 is executed.

A. Test cases

A test case for class cl is a (concurrent) program which

invokes one or more public methods in M possibly through

multiple threads. A test suite is a collection of multiple test

cases. For instance, Fig. 2(a) shows a test case for the class

in Fig. 1. It is written in the form of one prefix and multiple

suffixes. Intuitively, the prefix is a sequential part of the test

case which is executed first and then multiple suffixes are

executed afterwards by different threads concurrently. In this

example, there are two threads t1 and t2 ; t1 executes the first

suffix and t2 executes the second. Note that although this test

case potentially reveals the bug, it is unlikely to, if we simply

run this test case multiple times. The reason is that thread

t2 must be executed after t1 executes line 4 and before t1
executes line 5, so that the bug can be revealed.

A test execution is a sequence of atomic steps which are

executed during the execution of a test case with a particular

thread interleaving. Without loss of generality, we assume that

each step in a test execution is of the form (t, i, R, W) where
t is a thread identifier; i is an atomic instruction; R is a set of

variables read by the instruction; and W is a set of variables

written by the instruction. For instance, Fig. 2(b) shows a few

steps of a test execution of the test case on the left, where

s4 (and s5 , s9) represents a step which executes line 4 (and

5, 9) in Fig. 1. That is, thread t1 first reads the variable th
with s4 . Thread t2 then writes variable th with s9 . Finally,
thread t1 reads variable th with s5 . A test case may result in

multiple test executions due to different thread interleavings.

For instance, the test case shown in Fig. 2 may result in

multiple test executions, and only some of them result in a

NullPointerException.

1http://logging.apache.org/log4j/1.2/index.html

723

1. Prefix:
2. NullAppender var0 = new NullAppender();
3. Priority var1 = Priority.DEBUG;
4.
5. Suffix1:
6. var0.isAsSevereAsThreshold(var1);
7. Suffxi2:
8. var0.setThreshold(null);

(a) A test case

thread t1 : thread t2 :
s1 (t1 , s4 , {th}, ∅)
s2 (t2 , s9 , ∅, {th})
s3 (t1 , s5 , {th}, ∅)

(b) A test execution

Fig. 2: Sample test case and test execution

B. Coverage

A coverage criterion can be useful in multiple ways. For

instance, it provides a quantitatively measure for the ‘richness’

of a test suite. Ideally, the higher the coverage achieved

by a test suite, the more likely bugs in the program are

revealed.2 For another instance, coverage can be used as an

objective function in automatic test generation (e.g., the AFL

fuzzer is designed to maximize branch coverage [47]). Thus,

a rich family of code coverage criteria have been proposed,

e.g., statement coverage, branch coverage and path coverage.

Details of these criteria can be found in a survey [48].

Unfortunately, most existing code coverage criteria are

defined for sequential programs and are thus ineffective for

concurrent programs. For instance, one execution of the test

case in Fig. 2 covers all statements in the relevant methods

of the program shown in Fig. 1 and yet it is unlikely to

reveal the bug as we explained above. In recent years, multiple

code coverage criteria dedicated to concurrent programs have

been proposed [38], [3], [6]. The latest study in [6] proposes

a coverage metric called the method-pair coverage, which

measures the frequency of concurrent executions of method

pairs. While it makes sense to exercise different method pairs

concurrently, it may not be sufficient since CovCon is based on

test cases, not test executions. For instance, in our experiment,

CovCon generates the test case in Fig. 2 correctly and yet fails

to reveal the bug even if we run the test case with CovCon ten

times. Alternatively, we can use thread interleaving coverage

as a measurement [37], [39]. The problem is that there are

often many (i.e., exponential in the number of scheduling

points) thread interleavings. Covering all of them would be

costly and wasteful, since many of them could be considered

equivalent in terms of revealing the bug. For instance, given

the program in Fig. 2(a), there are many interleavings, many

of which are equivalently irrelevant to the bug.

In the following, we identify 4 requirements on a code

coverage criterion for thread-safe classes, which will be used

to guide our work.

R1 Unlike code coverage for sequential programs, we con-

jecture that a coverage criterion for a concurrent program

should be a function from a set of test executions to a

measurement (e.g., a number from 0 to 1), instead of a

function from a set of test cases to a measurement. This

2There are studies on whether this is true even for commonly used
code coverage criteria for sequential programs [16]. Code coverage criteria,
however, remain relevant unless we have better alternatives.

TABLE I: Generic memory-access patterns [27]

ID Memory-Access Pattern

1 (ta , si , {x}, ∅), (tb, sj , ∅, {x})
2 (ta , si , ∅, {x}), (tb, sj , {x}, ∅)
3 (ta , si , ∅, {x}), (tb, sj , ∅, {x})
4 (ta , si , {x}, ∅), (tb, sj , ∅, {x}), (ta , sk , {x}, ∅)
5 (ta , si , ∅, {x}), (tb, sj , ∅, {x}), (ta , sk , {x}, ∅)
6 (ta , si , ∅, {x}), (tb, sj , {x}, ∅), (ta , sk , ∅, {x})
7 (ta , si , {x}, ∅), (tb, sj , ∅, {x}), (ta , sk , ∅, {x})
8 (ta , si , ∅, {x}), (tb, sj , ∅, {x}), (ta , sk , ∅, {x})
9 (ta , si , ∅, {x}), (tb, sj , ∅, {x}), (tb, sk , ∅, {y}), (ta , sl , ∅, {y})
10 (ta , si , ∅, {x}), (tb, sj , ∅, {y}), (tb, sk , ∅, {x}), (ta , sl , ∅, {y})
11 (ta , si , ∅, {x}), (tb, sj , ∅, {y}), (ta , sk , ∅, {y}), (tb, sl , ∅, {x})
12 (ta , si , ∅, {x}), (tb, sj , {x}, ∅), (tb, sk , {y}, ∅), (ta , sl , ∅, {y})
13 (ta , si , ∅, {x}), (tb, sj , {y}, ∅), (tb, sk , {x}, ∅), (ta , sl , ∅, {y})
14 (ta , si , {x}, ∅), (tb, sj , ∅, {x}), (tb, sk , ∅, {y}), (ta , sl , {y}, ∅)
15 (ta , si , {x}, ∅), (tb, sj , ∅, {y}), (tb, sk , ∅, {x}), (ta , sl , {y}, ∅)
16 (ta , si , {x}, ∅), (tb, sj , ∅, {y}), (ta , sk , {y}, ∅), (tb, sl , ∅, {x})
17 (ta , si , ∅, {x}), (tb, sj , {y}, ∅), (ta , sk , ∅, {y}), (tb, sl , {x}, ∅)

is because the same test case may result in different test

executions under different thread interleavings, and thus a

measurement based on the test cases, without considering

the thread interleaving, is likely misleading.

R2 The coverage should be correlated with the bug-revealing

effectiveness of the test executions, i.e., given a program,

a set of test executions which achieve higher coverage

should be more likely to reveal bugs in the program.

R3 Given a set of test executions, the coverage should be

relatively easy to measure. Otherwise, the coverage would

not be able to provide instant feedback to, for instance,

tools for test case generation on-the-fly.

R4 Last, it should be intuitive so that software testers are

likely to use it as a guideline for creating test cases.

III. MAP COVERAGE

In this section, we define MAP-coverage and discuss why it

is meaningful for testing thread-safe classes. In the following,

we fix a thread-safe class cl with a set of mutable variables

V and a set of public methods M .

A. Memory-Access Patterns

Intuitively, a memory-access pattern is a pattern describing

how a shared variable is accessed by multiple threads. It has

been shown that memory-access patterns are often associated

724

Algorithm 1: Identify patterns from a test execution

1 let patternsx be an empty sequence of steps;
2 for each step e in the execution do
3 if e reads x by thread a thread ta then
4 for each subsequent step e′ do
5 if e′ writes x by thread tb s.t. ta �= tb then
6 add (e, e′) into patternsx ;

with the essence of multi-threaded bugs [27]. Memory-access

patterns can be viewed as an abstraction of the test execution,

which allows us to ignore irrelevant details and yet preserve

the cause of the multi-threaded bug. A memory access pattern

is represented in the form of a sequence of steps. In this work,

we adopt the set of 17 memory access patterns defined in [27],

shown in Table I where the second column shows the sequence

of steps in the memory-access pattern. It is shown that this set

is complete [40] under a certain assumption, as concurrency

bugs can be reduced to one or more of these patterns [21].

For instance, the fourth pattern is a scenario with three steps.

First, one thread t reads a variable x. Second, a different thread
writes x. Lastly, thread t reads variable x again. Note that this

pattern is presented in the executions of the program shown

in Fig. 1 and is very relevant to the bug.

Given a test execution, we can systematically identify the

set of memory-access patterns it contains by pattern matching.

That is, for each variable x ∈ V and every pattern in Table I,

we first match the first step in the pattern with a step in the

test execution, and then match the second step in the pattern

with a subsequent step in the test execution and so on, until

all steps in the pattern are matched. For instance, Algorithm 1

shows how to identify instances of the first pattern in Table I

from a given test execution with regards to variable x.
Since there are at most four steps, concerning two threads

and at most two variables, in any of the memory-access

patterns, the number of memory-access patterns in a test exe-

cution is bounded by C 2
N ∗ C 2

M ∗ C 4
K where C n

m is the number

of combinations, where N is the number of shared variables;

M is the number of threads; and K is the total number of

steps in the test execution. Given a test execution t, we write
patterns(t) to denote the set of memory-access patterns in t
(or equivalently, covered by t). Note that the thread identifiers
only matter when we decide whether they are the same thread

when we do the pattern matching. For instance, two instances

of the first pattern in Table I (ta, si , {x}, ∅), (tb, sj , ∅, {x})
and (tc, si , {x}, ∅), (td , sj , ∅, {x}) are considered the same,

since they only differ by the identifiers of the threads. In the

following, we assume that only one for all equivalent instances

of the patterns is kept.

B. MAP Coverage

Given a thread-safe class, the MAP-coverage of a set of

test executions is then calculated by the number of patterns

covered by t over the total number of memory-access patterns.
In general, identifying all feasible memory-access patterns of

a program is challenging, just like identifying all reachable

statements (for calculating statement coverage) is challenging.

Nonetheless, just like we can (over)estimate the number of

reachable statements by counting the total number of state-

ments in a given program, we can (over)estimate the number

of memory-access patterns as we explain below. The number

of the first pattern in Table I is estimated as

Σx∈V |Ix,R| ∗ |Ix,W | (1)

where x is a variable in V ; Ix,R is the set of atomic instructions

in the program which read x; Ix,W is the set of atomic

instructions in the program which write x; |S| is the size of a
set S. This is because it is in general possible to set up a thread
to execute any of the instructions which read x and set up

another thread to execute any of the instructions which write

x afterwards. Similarly, we can estimate the number of other

patterns accordingly. The total number of patterns, denoted as

TC , is then calculated as follows.

TC = Σx∈V 2 ∗ |Ix,R| ∗ |Ix,W | pattern 1–2

+Σx∈V |Ix,W |2 pattern 3

+Σx∈V |Ix,R|2 ∗ |Ix,W | pattern 4

+Σx∈V 3 ∗ |Ix,R| ∗ |Ix,W |2 pattern 5–7

+Σx∈V |Ix,W |3 pattern 8

+Σ{x,y}⊆V 3 ∗ |Ix,W |2 ∗ |Iy,W |2 pattern 9–11

+Σ{x,y}⊆V 6 ∗ |Ix,W | ∗ |Ix,R| ∗ |Iy,W | ∗ |Iy,R|
pattern 12–17

We remark applying the above formula to calculate TC in

practice is still non-trivial. For instance, identifying V , Ix,R
and Ix,W would require aliasing analysis, which is known to

be challenging. Furthermore, the above formula over estimates

the number of possible patterns as (1) not every instruction

reading/writing v may be feasible and (2) not every pair of

instructions reading/writing v may be executed concurrently

(e.g., due to happens-before constraints). We leave it to future

work on developing more precise estimations of TC .

Definition 1: (MAP-Coverage) Let TP be a concurrent pro-

gram; V be a set of shared mutable variables in TP; and
TE be a set of test executions. We say that a memory-access

pattern p is covered if and only if there exists at least one

test execution t ∈ TE such that p ∈ patterns(t). The MAP

coverage of T is measured as

| ∪t∈TE patterns(t)|
TC

(2)

where TC is defined as above.

For instance, given the program show in Fig. 1 (with-

out considering variables and methods which are not

shown), TC is calculated as follows. As there are two

read instructions and one write instruction on variable th,
TC is 2 ∗ 2 ∗ 1 + 1 2 + 2 2 ∗ 1 + 3 ∗ 2 ∗ 1 2 + 1 3 . Thus,

TC = 16 . Assume that there is only one test execution, i.e.,

725

Pattern 1
((t1 , s4 , {th}, ∅), (t2 , s9 , ∅, {th}))
Pattern 2
((t2 , s9 , ∅, {th}), (t1 , s5 , {th}, ∅))
Pattern 4
((t1 , s4 , {th}, ∅), (t2 , s9 , ∅, {th}), (t1 , s5 , {th}, ∅))

Fig. 3: Memory-Access Patterns

the one shown in Fig. 2(b), we can systematically obtain the

patterns in the test execution as discussed in Algorithm 1. The

results are shown in Fig. 3, i.e., three patterns are covered. The

MAP-coverage then can be calculated as 3
16 , i.e., this execution

covers 18.75% of the memory-access patterns.

IV. MAP COVERAGE GUIDED TEST GENERATION

In this section, we develop a testing method called

MAPTest, which aims to achieve high MAP-coverage. The

input is a class which is supposed to be thread-safe. The output

is a set of test cases, a set of test executions generated based

on the test cases, as well as a test report which summarizes

the achieved MAP-coverage. The overall algorithm is shown

in Algorithm 2. At line 1, we statically identity all the shared

mutable variables in the given class. Note that V not only

includes all those variables declared in the class but also

those which can be accessed through de-referencing or due

to inheritance. Furthermore, for each method m, we identify

Rm (or Wm) which is the set of all variables in V that method

m reads (or writes). Note that we use existing approaches for

aliasing analysis. Function identifyPatterns is then invoked

at line 2 to identify all potential memory-access patterns.

Function identifyPatterns takes the program as input and

returns a set of all possible memory-access patterns. The

details are shown in Algorithm 3. At line 1, for every variable

x in V , we identify all instructions (in all methods) which

read/write x. This is done using traditional techniques includ-
ing aliasing analysis and data flow analysis. Next, for each

variable (or pair of variables), we identify potential memory-

access patterns on the variable (or the variable pair). For in-

stance, at line 5, for every instruction which reads x and every

instruction which writes x, we add an instance of pattern type 1
into patterns. The resulting patterns then contains all possible
patterns. Note that patterns may contain patterns which are

infeasible due to happens-before [20] constraints among the

instructions. That is, if a pattern in patterns has a step

executing instruction i and then a step executing instruction j,
whereas j can only happen before i, the pattern is infeasible. In
MAPTest, we implement a standard happens-before inference

procedure [11] to help prune infeasible patterns from patterns.
For the example in Fig. 1, assume that we only focus on

th, there are two instructions s4 and s5 in Ith,R (i.e., line 4

and 5) and one instruction s9 in Ith,W (i.e., line 9). We form

Algorithm 2: MAPTest: overall algorithm

1 identify V , Rm and Wm for each method m in M ;
2 let patterns := identifyPatterns(cl);
3 while patterns is not empty do
4 if there is a pattern on x only in patterns then
5 let N := selectMethods with input x;

6 else if there is a pattern on x, y in patterns then
7 let N := selectMethods with input x, y;
8 let tc := buildTestCase(N);
9 let TE := textExecute(tc);

10 print tc and TE ;
11 remove patterns(te) for each te ∈ TE from patterns;

the following patterns.

(ta, s4, {th}, ∅), (tb, s9, ∅, {th})
(ta, s5, {th}, ∅), (tb, s9, ∅, {th})
(ta, s9, ∅, {th}), (tb, s4, {th}, ∅)
(ta, s9, ∅, {th}), (tb, s5, {th}, ∅)
(ta, s4, {th}, ∅), (tb, s9, ∅, {th}), (ta, s5, {th}, ∅)
(ta, s5, {th}, ∅), (tb, s9, ∅, {th}), (ta, s4, {th}, ∅)
(ta, s9, ∅, {th}), (tb, s9, ∅, {th}), (ta, s4, {th}, ∅)
· · ·

Note that the same instruction can appear in multiple steps.

For instance, to form an instance of pattern 5, a thread ta must

perform two writes on variable th (in the first and second step),

whereas in this example, there is only one instruction which

writes th (i.e., s9). As a result, s9 appears twice at the last

line of the above example, which means method setThreshold
is to be called twice.

Next, the loop from lines 3–11 in Algorithm 2 aims to

generate test executions to cover the patterns in patterns.
In particular, lines 4–7 first calls function selectMethods to

identity a sequence of up to 4 methods which can be used to

build a test case for exercising certain pattern. The details of

function selectMethods are shown in Algorithm 4. We write

Mx,R to denote the set of methods which contain at least one

instruction reading variable x; and Mx,W to denote the set of

methods which contain at least one instruction writing variable

x. There are two cases. One is that there are uncovered patterns
which involve one variable x (i.e., lines 2–6). The other is that

there are uncovered patterns which involve two variables x and

y (i.e., lines 7–9). In order to cover a pattern concerning with

only one variable x, a sequence of two (for patterns 1–3) or

three (for patterns 4–8) methods are identified. For instance,

to identify a sequence of two methods for pattern 1, we first

identify a method which contains an instruction which reads

x and then one that writes x.
For the example shown in Fig. 1, given the variable th,

method selectMethods first identifies a pair of methods which
potentially cover pattern 1. First, a method reading th is se-

lected, e.g., method isAsSevereAsThreshold . Next, a method
writing th is selected, e.g., method setThreshold . Similarly,
sequences of methods are identified for other patterns.

726

Algorithm 3: Algorithm identifyPatterns(cl)
1 identify Ix,R and Ix,W for each variable x;
2 for each x in V do
3 let patterns be ∅;
4 for each si in Ix,R and each sj in Ix,W do
5 add (ta, si , {x}, ∅), (tb, sj , ∅, {x}) into patterns; //for pattern 1
6 add (ta, sj , ∅, {x}), (tb, si , {x}, ∅) into patterns; //for pattern 2

7 for each pair of si and sj in Ix,W do
8 add (ta, si , ∅, {x}), (tb, sj , ∅, {x}) into patterns; //for pattern 3

9 for each si in Ix,R, sj in Ix,W , and sk in Ix,R do
10 add (ta, si , {x}, ∅), (tb, sj , ∅, {x}), (ta, sk , {x}, ∅) into patterns; //for pattern 4

11 for each si in Ix,W , sj in Ix,W , and sk in Ix,R do
12 add (ta, si , ∅, {x}), (tb, sj , ∅, {x}), (ta, sk , {x}, ∅) into patterns; //for pattern 5
13 add (ta, si , ∅, {x}), (tb, sk , {x}, ∅), (ta, sj , ∅, {x}) into patterns; //for pattern 6
14 add (ta, sk , {x}, ∅), (tb, si , ∅, {x}), (ta, sj , ∅, {x}) into patterns; //for pattern 7

15 for each si in Ix,W , sj in Ix,W , and sk in Ix,W do
16 add (ta, si , ∅, {x}), (tb, sj , ∅, {x}), (ta, sk , ∅, {x}) into patterns; //for pattern 8

17 for each x in V and y in V do
18 for each si in Ix,W , sj in Ix,W , sk in Iy,W , and sl in Iy,W do
19 add (ta, si , ∅, {x}), (tb, sj , ∅, {x}), (tb, sk , ∅, {y}), (ta, sl , ∅, {y}) into patterns; //for pattern 9
20 add (ta, si , ∅, {x}), (tb, sk , ∅, {y}), (tb, sj , ∅, {x}), (ta, sl , ∅, {y}) into patterns; //for pattern 10
21 add (ta, si , ∅, {x}), (tb, sk , ∅, {y}), (ta, sl , ∅, {y}), (tb, sj , ∅, {x}) into patterns; //for pattern 11

22 for each si in Ix,W , sj in Ix,R, sk in Iy,R, and sl in Iy,W do
23 add (ta, si , ∅, {x}), (tb, sj , {x}, ∅), (tb, sk , {y}, ∅), (ta, sl , ∅, {y}) into patterns; //for pattern 12
24 add (ta, si , ∅, {x}), (tb, sk , {y}, ∅), (tb, sj , {x}, ∅), (ta, sl , ∅, {y}) into patterns; //for pattern 13
25 add (ta, sj , {x}, ∅), (tb, si , ∅, {x}), (tb, sl , ∅, {y}), (ta, sk , {y}, ∅) into patterns; //for pattern 14
26 add (ta, sj , {x}, ∅), (tb, sl , ∅, {y}), (tb, si , ∅, {x}), (ta, sk , {y}, ∅) into patterns; //for pattern 15
27 add (ta, sj , {x}, ∅), (tb, sl , ∅, {y}), (ta, sk , {y}, ∅), (tb, si , ∅, {x}) into patterns; //for pattern 16
28 add (ta, si , ∅, {x}), (tb, sk , {y}, ∅), (ta, sl , ∅, {y}), (tb, sj , {x}, ∅) into patterns; //for pattern 17

29 return patterns;

If there are multiple methods containing instructions for

reading or writing a variable, the choice can be resolved in

different ways. Either it could be completely random, or we

can adopt existing heuristics like the method-pair coverage. In

the latter case, we resort to CovCon to recommend a ranked list

of method pairs and check whether there exists a method pair

which satisfies our requirement. If there is, we choose the top

method pair; otherwise we choose randomly. Details on how

method pairs are ranked can be found in [6]. For instance, to

obtain a method pair for covering pattern 1 on variable th, we
search through the ranked list of method pairs from CovCon.

The pair (isAsSevereAsThreshold, setThreshold) is selected,
as method isAsSevereAsThreshold contains an instruction

reading th and setThreshold contains an instruction writing

th. Note that the same method can be selected more than once
sometimes. Hereafter, we use MAPTest-random to denote an

implementation of MAPTest which selects methods randomly

and MAPTest to denote the one which selects methods ac-

cordingly to CovCon’s recommendations.

After the methods are selected, at line 8 in Algorithm 2,

function buildTestCase is called to build a test case. That is,

we set up an object c of type cl and two threads, ta and tb,
which share a reference of c. Note that this is sufficient given
that all patterns shown in Table I involve two threads only.

Thread ta and tb are then set up to invoke the sequence of

methods in N in an alternating order. Note that we generate

parameters for each method call (including the constructor of

cl) using traditional methods [25].

For instance, a test case for the class in Fig. 1 is shown in

Fig. 2. First, an object of type NullAppender is created in the

prefix, which is a sequence of sequential code to instantiate the

thread-safe class as well as randomly call methods to change

the state of the shared variable. Then, based on the methods

selected by selectedMethods, two suffixes are created to call

the methods. The suffixes form the concurrent part of the test

case, i.e., they are executed by different threads concurrently.

The constructed test case is then executed with a controlled

scheduler at line 9 in Algorithm 2 to obtain a set of test execu-

tions TE through function textExecute. Function textExecute
(detailed in Algorithm 5) takes a test case as input, and aims to

generate a set of test executions which cover as many memory-

access patterns as possible. At line 1, we first identify a set of

patterns which could potentially be exercised by the test case,

in a way very similar to Algorithm 1 (by assuming that the

program contains only the methods called in the test case).

Afterwards, we aim to generate one thread interleaving for

covering every pattern.

This is achieved with a scheduler which is controlled

through code instrumentation. That is, we first statically insert

a scheduling point in front of every instruction that reads

727

Algorithm 4: Algorithm selectMethods
1 let N be an empty sequence;
2 if the input is a variable x then
3 add (m, n) s.t. m ∈ Mx,R and n ∈ Mx,W ; //for pattern 1
4 add (m, n) s.t. m ∈ Mx,W and n ∈ Mx,R; //for pattern 2
5 add (m, n) s.t. m ∈ Mx,W and n ∈ Mx,W ; //for pattern 3
6 add (m, n, l) s.t. {m, l} ⊆ Mx,R and n ∈ Mx,W ;
7 //for pattern 4
8 add (m, n, l) s.t. {m, n} ⊆ Mx,W and l ∈ Mx,R;
9 //for pattern 5

10 add (m, n, l) s.t. {m, l} ⊆ Mx,W and n ∈ Mx,R;
11 //for pattern 6
12 add (m, n, l) s.t. m ⊆ Mx,R and {n, l} ∈ Mx,W ;
13 //for pattern 7
14 add (m, n, l) s.t. {m, n, l} ⊆ Mx,W ; //for pattern 8

15 if the input is a pair of variables x, y then
16 add (m, n, l, k) s.t. {m, n} ⊆ Mx,W and

{l, k} ⊆ My,W ; //for pattern 9
17 add (m, n, l, k) s.t. {m, l} ⊆ Mx,W and

{n, k} ⊆ My,W ; //for pattern 10
18 add (m, n, l, k) s.t. {m, k} ⊆ Mx,W and

{n, l} ⊆ My,W ; //for pattern 11
19 add (m, n, l, k) s.t. m ⊆ Mx,W and n ⊆ Mx,R and

l ⊆ My,R and k ⊆ My,W ; //for pattern 12
20 add (m, n, l, k) s.t. m ⊆ Mx,W and n ⊆ My,R and

l ⊆ Mx,R and k ⊆ My,W ; //for pattern 13
21 add (m, n, l, k) s.t. m ⊆ Mx,R and n ⊆ Mx,W and

l ⊆ My,W and k ⊆ My,R; //for pattern 14
22 add (m, n, l, k) s.t. m ⊆ Mx,R and n ⊆ My,W and

l ⊆ Mx,W and k ⊆ My,R; //for pattern 15
23 add (m, n, l, k) s.t. m ⊆ Mx,R and n ⊆ My,W and

l ⊆ My,R and k ⊆ Mx,W ; //for pattern 16
24 add (m, n, l, k) s.t. m ⊆ Mx,W and n ⊆ My,R and

l ⊆ My,W and k ⊆ Mx,R; //for pattern 17

or writes a shared variable (at the bytecode level). During

dynamic execution, we use a daemon thread to control the

thread scheduling. That is, the daemon thread suspends all

threads when a scheduling point is reached, and then selects a

suspended thread to continue. If there is more than one thread

which can be scheduled next to execute, we eagerly schedule

the thread which would execute a step in a pattern, e.g., if

the step requires executing an instruction i and a thread t is
to execute i next, t is scheduled. If multiple threads can be

scheduled and none of them would exercise immediately a

step in the pattern, a thread is selected at random.

For instance, given the test case in Fig. 2(a) and the pattern 4

in Fig. 3, after thread t1 reads th at s4 , we reach a scheduling
point where either t1 proceeds to read th (by executing line 5)

or t2 proceeds to write th (by executing line 9). According to

the pattern, the next step should be a different thread writing

th, and thus thread t2 is scheduled. After t2 executes s9 ,
another scheduling point is reached and t1 is scheduled for

the same reason. As a result, the pattern is covered.

At line 10 in Algorithm 2, the test case and the test

executions are printed as a part of the report. Lastly, all

patterns covered by any test execution in TE are removed

from patterns. The loop continues until patterns becomes

empty (or it reaches time out). Note that Algorithms 3, 4 and 5

always terminate. However, Algorithm 5 does not guarantee

Algorithm 5: Algorithm testExecute
1 let P be the set of patterns which can be potentially covered

by the test case;
2 for each pattern p in P do
3 generate a thread interleaving which eagerly schedules

the steps in p;

4 execute the test case according to the generated thread
interleaving to obtain a set of test executions TE ;

5 return TE ;

that the resultant test execution will cover the pattern and, as

a result, the termination of Algorithm 2 cannot be guaranteed.

V. IMPLEMENTATION AND EVALUATION

MAPTest is implemented based on JDK 8 and it is open

source.3 It is built on top of the Java bytecode analysis

and modification tool ASM, which is used to insert code

for controlling the thread interleaving at the bytecode level.

MAPTest uses the framework ConTeGe [31] to generate test

cases.

A. Evaluation

To evaluate the relevance of MAP-coverage and the ef-

fectiveness of MAPTest, we conduct a set of experiments to

answer the following research questions (RQs).

1) RQ1: Does MAPTest reveal bugs effectively?

2) RQ2: Does MAPTest achieve high MAP-coverage?

3) RQ3: Is MAP-coverage correlated with bug-revealing

effectiveness of test executions?

Our test subjects are a set of 20 buggy ‘thread-safe’ classes

collected from various sources including all test subjects

from [6]. These examples are widely used in previous stud-

ies [6], [31]. Table II shows the details of these classes.

Column Class Name shows the name of class. Column Fields
shows the number of variables defined in the class, including

those from its super classes. Note that we do not distinguish

the access permission (e.g., public or private) of the variables,
since all of the instance variables are by right shared. Column

Methods shows the number of public methods in the class

including those from the super classes. Column LOC shows

the number of lines of code in the class including those from

the super classes (counted using Statistic).4 Lastly, column

Bug shows the type of bug in the class. MAPTest uses a sim-

ple oracle which monitors unexpected exceptions, including

assertion failures if there are assertions in the program.

All results of the experiments presented below are obtained

on a machine with two octa-core CPUs Intel(R) Xeon(R) CPU

E5-2640 @ 2.60GHz and 125G memory, running CentOS

Linux7.4 (64 bit). The timeout is set to be 1 hour for each

run. To minimize the impact of randomness, each experiment

is repeated for 10 times independently with different random

seeds and we report the average result.

3https://github.com/MAPCoverage/Map-Coverage
4https://plugins.jetbrains.com/plugin/4509-statistic

728

TABLE II: Benchmarks Description

ID Project Version Package Class Name Fields Methods LOC Bug

V1
Apache DBCP 1.4

org.apache.commons.dbcp.datasources PerUserPoolDataSource 35 65 682 Data race
V2 org.apache.commons.dbcp.datasources SharedPoolDataSource 30 51 516 Atomicity
V3

JDK

1.1 java.io BufferedInputStream 7 9 237 Atomicity
V4 1.6.0 java.util ConcurrentHashMap 15 29 1007 Atomicity
V5 1.6.0 java.util HashTable 14 31 558 Data race
V6 1.4.1 java.util.logging Logger 18 44 530 Atomicity
V7 1.6.0 java.lang StringBuffer 5 52 845 Atomicity
V8 1.4.2 java.util SynchronizedMap 6 26 79 Deadlock
V9 1.1.7 java.util Vector 3 22 177 Atomicity
V10 1.4.2 java.util Vector 5 51 660 Atomicity
V11

JFreeChart

1.0.13 org.jfree.data.time Day 20 26 271 Data race
V12 0.9.12 org.jfree.chart.axis NumberAxis 43 110 1637 Atomicity
V13 1.01 org.jfree.chart.axis PeriodAxis 45 125 1681 Data race
V14 0.98 org.jfree.data.time TimerSeries 12 41 331 Data race
V15 1.09 org.jfree.chart.plot XYPlot 84 217 2788 Data race
V16 0.98 org.jfree.data XYSeries 7 25 198 Data race
V17

Log4j 1.2.13
org.apache.log4j.helpers AppenderAttachableImpl 1 8 92 Data race

V18 org.apache.log4j FileAppender 7 33 410 Atomicity
V19 org.apache.log4j.varia NullAppender 8 19 138 Atomicity
V20 Xstream 1.4.1 com.thoughtworks.xstream Xstream 88 66 798 Atomicity

TABLE III: Results compared with CovCon and MAPTest-Random

ID
MAPTest CovCon MAPTest-Random Comparison

Time(s) Success Rate Time(s) Success Rate Time(s) Success Rate
M. over C. M. over M-R. M-R. over C.

Speedup p-value Speedup p-value Speedup p-value

V1 25.3 100% 30.0 100% 93.0 100% 1.18 0.475 3.67 0.032 −3.10 0.028
V2 20.3 100% 18.2 100% 85.9 100% −1.12 0.441 4.23 0.009 −4.72 0.009
V3 1.0 100% 4.5 100% 0.6 100% 4.50 0.009 −1.67 0.386 7.50 0.012
V4 147.0 100% 2811.5 40% 572.0 100% 19.13 0.006 3.89 0.083 4.92 0.011
V5 6.6 100% 433.1 90% 3.5 100% 65.62 0.011 −1.89 0.767 123.74 0.008
V6 90.4 100% 287.8 100% 934.6 100% 3.18 0.041 10.34 0.008 −3.25 0.083
V7 257.5 100% 1710.2 90% 674.7 100% 6.64 0.041 2.62 0.359 2.53 0.221
V8 480.5 100% 404.5 100% 1235.5 100% −1.19 0.476 2.57 0.032 −3.05 0.032
V9 237.3 100% 309.7 100% 3600.0 0% 1.31 0.838 15.17 0.006 −11.62 0.006
V10 86.7 100% 413.4 90% 2636.2 40% 4.77 0.541 30.41 0.006 −6.38 0.018
V11 89.3 100% 127.0 100% 129.8 100% 1.42 0.359 1.45 0.359 −1.02 0.838
V12 31.1 100% 71.8 100% 2542.6 50% 2.30 0.041 81.76 0.006 −35.41 0.006
V13 36.8 100% 56.0 100% 26.8 100% 1.52 0.415 −1.37 0.221 2.09 0.076
V14 53.7 100% 53.8 100% 332.9 100% 1.00 0.683 6.19 0.097 −6.19 0.154
V15 27.7 100% 439.4 100% 2339.7 70% 15.86 0.006 84.47 0.006 −5.32 0.008
V16 9.2 100% 9.6 100% 55.3 100% 1.04 1.000 6.01 0.006 −5.76 0.032
V17 5.7 100% 20.9 100% 1.4 100% 3.67 0.008 −4.07 0.012 14.93 0.006
V18 18.7 100% 3600.0 0% 15.0 100% 192.51 0.006 −1.25 0.799 240.00 0.006
V19 239.3 100% 3600.0 0% 234.7 100% 15.04 0.006 −1.02 1.000 15.34 0.006
V20 1210.5 100% 2316.3 70% 2647.8 50% 1.91 0.032 2.19 0.014 −1.14 0.639

RQ1: Does MAPTest reveal bugs effectively? In order to

answer this question, we systematically apply MAPTest to

every class and measure the time elapsed before the first

bug is revealed (by any execution). To examine whether there

is a statistically significant difference between two methods,

we use the Wilcoxon signed-rank test [44]. The significance

level is set to 0.05. If p-value is smaller than 0.05, we

reject the null hypotheses which means that the difference

between two methods is statistically significant; otherwise we

accept the null hypothesis which indicates the difference is not

statistically significant.

For a baseline comparison, we compare MAPTest with the

state-of-the-art approach CovCon (which has been shown [6]

to significantly outperform other approaches like Con-

TeGe [31], AutoConTest [39] and Narada [32]). The results

of the experiments are shown in Table III, where column

Time shows the average time spent on revealing a bug,

and Success Rate shows how many times (out of 10 runs)

a bug is successfully revealed. The last six columns report

the speedup and statistical test comparison between different

testing methods, where column M. over C. is the results of

MAPTest’s compared to that of CovCon.

We have the following observations based on the results.

First, MAPTest successfully revealed bugs in all 20 programs,

whereas CovCon failed in two cases. Second, MAPTest out-

performs CovCon in 18 out of 20 cases (significantly better

than CovCon in 11 cases) and performs similarly in the

remaining two cases. Overall, MAPTest achieves an average

729

0.62

0.09 0.08
0.06 0.06

0.04 0.03 0.02
0.0

0.2

0.4

0.6

pattern 3 pattern 9 pattern 8 pattern 1 pattern 11 pattern 10 pattern 2 pattern 5

B
u

g
−i

n
d

u
ci

n
g

 p
at

te
rn

s
ra

ti
o

Fig. 4: Most bug-inducing patterns

speedup of 17 times and a maximum speedup of 193 times

over CovCon. Third, MAPTest performs consistently across

different runs for the same program, e.g., MAPTest reveals a

bug in every run for every program, whereas CovCon may

sometimes miss the bug for 5 out of 18 programs.

We additionally compare MAPTest with MAPTest-Random

to see whether testing guided by MAP-coverage alone (without

using the method-pair coverage heuristic) is useful. Note that

MAPTest-Random selects methods randomly in Algorithm 4

rather than applying the method-pair coverage as a guideline.

The results are summarized in Table III, where column M.
over M-R. represents the results of MAPTest’s compared to

MAPTest-Random and column M-R. over C. represents the re-
sults of MAPTest-Random’s compared to CovCon. Comparing

MAPTest-Random and CovCon, MAPTest-Random performs

noticeably (i.e., more than 2 times) better for 8 programs

(significantly better in 6 programs) and performs notice-

ably worse for 10 programs. Furthermore, MAPTest-Random

and CovCon complement each other, as they perform better

on different programs. Comparing MAPTest and MAPTest-

Random, MAPTest performs better in most of the cases (i.e.,

75%) and performs noticeably worse for one program. We

conclude that MAPTest effectively reveals concurrency bugs

and furthermore combining MAP-coverage and method-pair

coverage is effective.

We further analyze which are the memory-access patterns

that successfully trigger the bug in each case. The results are

shown in Fig. 4. The results show that some memory-access

patterns trigger more bugs. The most bug-triggering pattern is

“pattern 3”, i.e., concurrent write-write on a shared variable,

which accounts more than half of the cases. This observation

suggest that it might be useful to prioritize certain patterns

during testing, which we will explore in the future works.

RQ2: Does MAPTest achieve high MAP-coverage? In order

to answer this question, we systematically apply MAPTest to

every class for a total of 30 minutes and measure the MAP

coverage achieved over time. The results are shown on the

left of Fig. 5, where the vertical axis is the MAP-coverage

achieved. Note that we run MAPTest on each program for 2

hours and take the number of patterns covered by them to

be the total number of patterns, since it is in general non-

trivial to know exactly how many patterns are there. The

results show that the MAP coverage increases rapidly for

all programs initially and continues to increase for most of

the programs. The rate of increment, however, varies from

program to program. For most of the programs, a high MAP-

coverage (> 50%) is reached after 30 minutes, whereas for

6 programs, the MAP-coverage remains low for 30 minutes.

We conjecture that the reason for the latter is that MAPTest is

unable to control the thread interleaving as expected to cover

certain patterns.

To show the effect of selecting methods and controlling the

thread interleaving in MAPTest, we additionally implement

a test engine (called Random) which randomly selects

method pairs for generating test cases and executes them

without controlling thread interleaving. We then measure the

difference between MAPTest and Random’s MAP-coverage

over time. The results are shown on the right of Fig. 5, where

the vertical axis is the value of MAPTest’s MAP coverage

minus that of Random. We can find that the difference

increases monotonically over time. Furthermore, the trend for

each program is similar to that of the figure on the left. This

suggests that MAPTest improves MAP-coverage effectively

as expected, whereas a random testing engine is ineffective

at covering different memory-access patterns.

RQ3: Is MAP-coverage correlated with bug-revealing effec-
tiveness of test executions? In order to answer this question, we
design an experiment which is inspired by the study in [16].

The general idea is to measure the correlation between the

MAP-coverage of a set of test executions with the number of

bugs those test executions revealed. First, we systematically

inject additional bugs into the test programs by removing

all locking mechanisms (e.g., by tracking lock objects and

the synchronized keyword) in the programs. The reason for

injecting bugs is that there is typically only one bug in the

test program, which is insufficient for calculating correlation.

We then run each test program for two hours, record the total

number of different bugs encountered as the total number of

bugs. Two failed test executions are considered to reveal the

same bug if the same exception is observed from the same

instruction. We also record all the memory-access patterns

observed during the two hours as the total number of patterns.

We then run each program independently ten times with

different random seeds, each time for 20 minutes. We record

the achieved MAP-coverage and the number of bugs revealed

after 5 minutes, 10 minutes, 15 minutes and 20 minutes

respectively. This gives us a total of 40 data points for each

program and 800 in total.

Afterwards, we calculate the relationship between MAP-

coverage and bug coverage using Kendall correlation coeffi-

cients [18]. Kendall correlation is chosen (instead of Pearson

Product Moment Correlation [28]) as it has fewer assumptions,

e.g., it does not assume that the variables are linearly related

or the data has a normal distribution. A Kendall correlation

coefficient ranges from -1 to 1, where a positive value means

positively correlated and a negative value means negatively

correlated. According to the definition of correlation in Guild-

ford scale [1], an absolute value of less than 0.4 means that

the (positive or negative) correlation is low; an absolute value

730

V1V

V2

V3

V4

V5

V

V6

V7

V8

V9
V10

V11

V12
V13

V
V14

V15

V16

V17

V

V18

V19

V20
0.00

0.25

0.50

0.75

0 500 1000 1500
Time(s)

(a) MAPTest

M
A

P
−C

ov
er

ag
e

V1

V2

V3

V4

V5

V

V6

V7

V8

V9

V10

V11

V12

V13

V

V14

V15

V16

V17

V

V18

V19

V20

0.00

0.25

0.50

0.75

0 500 1000 1500
Time(s)

(b) Random

M
A

P
−C

ov
er

ag
e

d
if

fe
re

n
ce

Fig. 5: MAP coverage achieved over time

between 0.4 and 0.7 means that the correlation is moderate;
and otherwise the correlation is high.

For a baseline comparison, we measure the method-pair

coverage and calculate the correlation between the method-

pair coverage and the bug coverage similarly. That is, we first

run each program using CovCon for 2 hours to obtain the

total number of method pairs. We then run each program using

CovCon ten times, each time 20 minutes to record the achieved

method-pair coverage and the number of bugs revealed after

5, 10, 15 and 20 minutes.

The results are shown in Table IV, where the second, third

and fourth columns show the total number of method-pairs,

patterns and bugs (covered after executing 2 hours). Note that

for 3 programs, no new bugs are injected, as there are no locks

in these programs. The last two columns show the Kendall

correlation coefficients between MAP-coverage and the

number of bugs revealed, and that between the method-pair

coverage and the number of bugs revealed. Note that an entry

“—” means that the same number of patterns/method-pairs

are covered in the 10 independent runs (and thus the Kendall

correlation coefficients cannot be calculated), and the “*”

means that the method did not find any bug. We present the

average correlation values across all programs in the last row.

We can observe that there are moderate correlations for 6

programs and high correlation for 1 program in the case of

MAP-coverage, whereas there are moderate correlations for

3 programs in the case of method-pair coverage. On average,

MAP-coverage shows a correlation of 0.43, which is much

stronger than that of the method-pair coverage, which is

0.13. We thus conclude that MAP-coverage is reasonably

correlated to the bug-revealing effectiveness of test executions.

Limitations. While the above experimental results show that

MAPTest outperforms existing techniques, it still has some

limitations which require future research. First, it may not

be easy for test engineers to manually design test cases to

TABLE IV: Correlation Results of MAPTest and CovCon

Kendall(τ)
ID

Method
Pairs

Patterns Bugs
MAPTest CovCon

V1 2145 691 1 0.19 0.20
V2 1326 462 1 0.38 0.27
V3 45 3960 18 0.61 0.32
V4 435 3608 1 0.16 0.16
V5 496 8619 10 0.74 0.19
V6 990 469 2 0.44 0.35
V7 1485 15205 42 0.28 0.54
V8 351 2354 2 0.20 0.11
V9 253 1742 17 0.29 0.10
V10 1326 7504 35 0.33 0.65
V11 351 1347 11 0.54 —
V12 6105 1560 2 0.31 0.42
V13 7875 4576 4 −0.09 0.32
V14 861 1596 9 0.53 0.39
V15 23653 24093 9 0.28 0.33
V16 325 1344 12 0.34 0.22
V17 36 1295 16 0.56 —
V18 561 1585 7 0.37 0.18
V19 190 137 2 0.56 *
V20 2211 4930 5 −0.08 0.18

All: — — — 0.43 0.13

achieve high MAP-coverage, mainly due to the difficulty in

controlling the scheduling. Given a memory-access pattern,

say on a certain shared variable x, one way is to manually

create a test case for covering the pattern is to introduce

multiple threads reading/writing x concurrently (which

increases the chance of exhibiting the pattern). Furthermore,

explicit thread control (like thread yield, sleep, and so on)

could be used to enforce certain ordering of reading/writing

the variable according to the pattern. We do acknowledge that

this could be time-consuming and labor-intensive. Second, it

is difficult in general to estimate the total number of feasible

patterns. The estimation in Def. 1 is based on a simple static

analysis and thus may be far from accurate. Knowing more

precisely whether certain patterns are possible requires us to

perform more complicated static analysis, which will be left

731

to future work. Lastly, MAPTest’s employs some heuristics

(e.g., the one from CovCon) to achieve high MAP-coverage,

which may or may not work in general.

Threats to validity. The above evaluation suffers from two

threats to validity. First, while we tried our best to collect

benchmark programs, the number of programs is limited and

thus it is not clear whether our conclusion above extends to

other programs. Furthermore, it remains to be tested whether

MAPTest performs well on large thread-safe classes which

have more than a few thousand of lines of code. As other

classes may interact indirectly with a given class, the scope

of the analysis may need to be extended to several classes or

packages. Second, although we tried our best to eliminate bugs

in our implementation or effect of randomness, we cannot be

completely sure.

VI. RELATED WORK

This work is closely related to work on code coverage

criteria for multi-threaded programs.

CovCon [6] generates test cases which are likely to cover

these uncovered method pairs by analyzing the recorded

executions to extract method pairs that are frequently executed.

ConSuite [37] statically analyzes the set of thread interleavings

and examines the record of executions to check if a particular

thread interleaving is covered. ConSuite then applies genetic

algorithms to generate tests that can cover more interleaving.

AutoConTest [39] considers calling context information, dy-

namically and iteratively computes the coverage requirements,

generates sequential tests based on sequential coverage, and

assembles sequential tests into concurrent tests.

HaPSet [43] is a coverage-guided concurrency testing al-

gorithm. The idea is to gather the ordering constraints in

the program and to guide the testing of the program through

analyzing the constraints. TSA [14] aims to achieve high syn-

chronization coverage of concurrent programs by generating

thread scheduling to cover uncovered coverage requirements.

Yang et al. [45] proposed a def-use pair coverage based on

all-du-path coverage. Kena et al. [19] proposed a method to

deriving new coverage metrics for testing concurrent software

based on existing dynamic or static analysis approaches such

as Eraser [33] and GoldiLocks [8]. They expanded multiple

existing concurrent test coverage metrics, e.g., ConcurPairs,

Definition-use coverage and Synchronisation pair coverage.

Our work is different from the above work as we proposed a

new coverage criterion called MAP-coverage. MAP-coverage

is more abstract than thread-interleaving coverage and is more

bug-related than method-pair coverage. The experiment results

show that MAPTest works more effectively than state-of-the-

art approaches.

This work is broadly related to work on detecting concur-

rency bugs [10], [42], [22]. Research on concurrency bug

detection usually focuses on three sub-problems, i.e., (1)

how to improve the efficiency of the detection; (2) how to

improve the effectiveness of the detection; and (3) how to

reduce false positives. Happens-before analysis [23], [29] and

lockset algorithms [9], [24], [7] are classic approaches for

concurrency bug detection, which are widely used to detect

bugs of concurrent programs. For instance, RaceChecker [23]

is a data race detector which uses happens-before relation to

prune infeasible races before reporting potential races to be

verified. Eraser [33] proposed a lockset algorithm to detect

bugs in lock-based multi-threaded programs by monitoring

every shared memory references and locking behaviours. The

lockset algorithm is refined for reducing overhead and false

positives in [9], [7], [24], [41]. There are proposals [46], [42],

[8], [5], [30] on combining the lockset algorithm with happens-

before methods. However, due to limitations of static analysis

methods, the lockset algorithm and the happens-before anal-

ysis methods often suffer from false positives compared to

dynamic concurrency bug detection methods.

A false positive means a thread interaction that has nothing

to do with defects is considered as an error. Static detection

technology does not execute the program, but analyzes the

source code to detect defects. So the detector cannot determine

the happens-before and alias information correctly. That may

lead to false positives.

In concurrent bug detection, random testing is applied as

well. Methods proposed in [34], [26], [35], [17] are based

on random testing and propose to ‘optimize’ the random

scheduler in certain way for better detecting concurrency bugs.

PCT [4] is a randomized scheduling method, which uses

a disciplined schedule-randomization technique to provide

efficient probabilistic guarantees of finding bugs. Random

testing suffers from the problem of redundant exploration, i.e.,

the same (non-buggy) trace may be executed multiple times,

which makes it hard to find bugs that hide in rare schedules.

This work is remotely related to various studies on code

coverage in general, e.g., [12], [36].

VII. CONCLUSION

We conclude this with a discussion on whether MAP-

coverage and MAPTest satisfy the requirements we established

in Section II. Requirement R1 is satisfied by definition. Re-

quirement R2 is evaluated in Section V. According to the

experimental results, MAP-coverage is positively correlated

with bug-coverage, although not strongly correlated. This

motivates us to further investigate what is correlated with bug-

coverage in the future. Requirement R3 is satisfied, as we

have shown how to efficiently estimate the total number of

memory-access patterns and how to obtain a set of memory-

access patterns given a test execution. Lastly, we would argue

that requirement R4 is partly satisfied, as creating test cases for

high MAP-coverage roughly translates to creating test cases

which maximize different ways of accessing shared variables

concurrently.

VIII. ACKNOWLEDGMENT

This work is partially funded by projects 61872263,

U1836214, 61802275 from National Natural Science Foun-

dation of China, and the Singapore Ministry of Education

Research Found, grant number: MOE2016-T2-2-123.

732

REFERENCES

[1] J B. Stroud. Fundamental statistics in psychology and education. Journal
of Educational Psychology, 42:318, 05 1951.

[2] Francesco Adalberto Bianchi, Alessandro Margara, and Mauro Pezzè.
A survey of recent trends in testing concurrent software systems. IEEE
Trans. Software Eng., 44(8):747–783, 2018.

[3] Arkady Bron, Eitan Farchi, Yonit Magid, Yarden Nir, and Shmuel
Ur. Applications of synchronization coverage. In Proceedings of
the ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPOPP 2005, June 15-17, 2005, Chicago, IL, USA, pages
206–212, 2005.

[4] Sebastian Burckhardt, Pravesh Kothari, Madanlal Musuvathi, and San-
tosh Nagarakatte. A randomized scheduler with probabilistic guarantees
of finding bugs. In ACM Sigplan Notices, volume 45, pages 167–178.
ACM, 2010.

[5] Jong-Deok Choi, Keunwoo Lee, Alexey Loginov, Robert O’Callahan,
Vivek Sarkar, and Manu Sridharan. Efficient and precise datarace
detection for multithreaded object-oriented programs. ACM Sigplan
Notices, 37(5):258–269, 2002.

[6] Ankit Choudhary, Shan Lu, and Michael Pradel. Efficient detection of
thread safety violations via coverage-guided generation of concurrent
tests. In Proceedings of the 39th International Conference on Software
Engineering, ICSE 2017, Buenos Aires, Argentina, May 20-28, 2017,
pages 266–277, 2017.

[7] Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. Precise race detection
and efficient model checking using locksets. Technical report, Microsoft
Tech Report, 2006.

[8] Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. Goldilocks: a race and
transaction-aware Java runtime. In ACM SIGPLAN Notices, volume 42,
pages 245–255. ACM, 2007.

[9] Dawson Engler and Ken Ashcraft. RacerX: effective, static detection
of race conditions and deadlocks. In ACM SIGOPS Operating Systems
Review, volume 37, pages 237–252. ACM, 2003.

[10] Cormac Flanagan and Stephen N. Freund. FastTrack: efficient and
precise dynamic race detection. In ACM Sigplan Notices, volume 44,
pages 121–133. ACM, 2009.

[11] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson,
James B. Saxe, and Raymie Stata. Extended static checking for Java. In
Proceedings of the 2002 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), Berlin, Germany, June
17-19, 2002, pages 234–245, 2002.

[12] Milos Gligoric, Alex Groce, Chaoqiang Zhang, Rohan Sharma, Mo-
hammad Amin Alipour, and Darko Marinov. Guidelines for coverage-
based comparisons of non-adequate test suites. ACM Trans. Softw. Eng.
Methodol., 24(4):22:1–22:33, 2015.

[13] Brian Goetz, Tim Peierls, Joshua J. Bloch, Joseph Bowbeer, David
Holmes, and Doug Lea. Java Concurrency in Practice. Addison-Wesley,
2006.

[14] Shin Hong, Jaemin Ahn, Sangmin Park, Moonzoo Kim, and Mary Jean
Harrold. Testing concurrent programs to achieve high synchronization
coverage. In Proceedings of the 2012 International Symposium on
Software Testing and Analysis, ISSTA 2012, pages 210–220, New York,
NY, USA, 2012. ACM.

[15] Jeff Huang and Charles Zhang. Debugging concurrent software: Ad-
vances and challenges. J. Comput. Sci. Technol., 31(5):861–868, 2016.

[16] Laura Inozemtseva and Reid Holmes. Coverage is not strongly correlated
with test suite effectiveness. In 36th International Conference on
Software Engineering, ICSE ’14, Hyderabad, India - May 31 - June
07, 2014, pages 435–445, 2014.

[17] Pallavi Joshi, Chang-Seo Park, Koushik Sen, and Mayur Naik. A
randomized dynamic program analysis technique for detecting real
deadlocks. In ACM Sigplan Notices, volume 44, pages 110–120. ACM,
2009.

[18] Maurice G. Kendall. A new measure of rank correlation. Biometrika,
30(1/2):81–93, 1938.

[19] Bohuslav Krena, Zdenek Letko, and Tomás Vojnar. Coverage metrics
for saturation-based and search-based testing of concurrent software. In
Runtime Verification - Second International Conference, RV 2011, San
Francisco, CA, USA, September 27-30, 2011, Revised Selected Papers,
pages 177–192, 2011.

[20] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21(7):558–565, 1978.

[21] Huarui Lin, Zan Wang, Shuang Liu, Jun Sun, Dongdi Zhang, and
Guangning Wei. Pfix: Fixing concurrency bugs based on memory
access patterns. In Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, ASE 2018, pages 589–
600, New York, NY, USA, 2018. ACM.

[22] Shuang Liu, Guangdong Bai, Jun Sun, and Jin Song Dong. Towards
using concurrent java api correctly. In 2016 21st International Confer-
ence on Engineering of Complex Computer Systems (ICECCS), pages
219–222, 11 2016.

[23] Kai Lu, Zhendong Wu, Xiaoping Wang, Chen Chen, and Xu Zhou.
Racechecker: efficient identification of harmful data races. In Parallel,
Distributed and Network-Based Processing (PDP), 2015 23rd Euromicro
International Conference on, pages 78–85. IEEE, 2015.

[24] Hiroyasu Nishiyama. Detecting data races using dynamic escape
analysis based on read barrier. In Virtual Machine Research and
Technology Symposium, pages 127–138, 2004.

[25] Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas
Ball. Feedback-Directed Random Test Generation. In ICSE, pages 75–
84, 2007.

[26] Chang-Seo Park and Koushik Sen. Randomized active atomicity
violation detection in concurrent programs. In Proceedings of the 16th
ACM SIGSOFT International Symposium on Foundations of software
engineering, pages 135–145. ACM, 2008.

[27] Sangmin Park, Richard W. Vuduc, and Mary Jean Harrold. UNICORN:
a unified approach for localizing non-deadlock concurrency bugs. Softw.
Test., Verif. Reliab., 25(3):167–190, 2015.

[28] Karl Pearson. Notes on the history of correlation. Biometrika, 13(1):25–
45, 1920.

[29] Dejan Perkovic and Peter J Keleher. Online data-race detection via
coherency guarantees. In OSDI, volume 96, pages 47–57, 1996.

[30] Eli Pozniansky and Assaf Schuster. Multirace: efficient on-the-fly
data race detection in multithreaded C++ programs. Concurrency and
Computation: Practice and Experience, 19(3):327–340, 2007.

[31] Michael Pradel and Thomas R. Gross. Fully automatic and precise
detection of thread safety violations. In ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’12, Beijing,
China - June 11 - 16, 2012, pages 521–530, 2012.

[32] Malavika Samak, Murali Krishna Ramanathan, and Suresh Jagannathan.
Synthesizing racy tests. In Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
Portland, OR, USA, June 15-17, 2015, pages 175–185, 2015.

[33] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro,
and Thomas Anderson. Eraser: A dynamic data race detector for
multithreaded programs. ACM Transactions on Computer Systems
(TOCS), 15(4):391–411, 1997.

[34] Koushik Sen. Effective random testing of concurrent programs. In Pro-
ceedings of the 22nd IEEE/ACM international conference on Automated
software engineering, pages 323–332. ACM, 2007.

[35] Koushik Sen. Race directed random testing of concurrent programs.
ACM Sigplan Notices, 43(6):11–21, 2008.

[36] Matt Staats, Michael W. Whalen, Ajitha Rajan, and Mats Per Erik
Heimdahl. Coverage metrics for requirements-based testing: Evaluation
of effectiveness. In Second NASA Formal Methods Symposium - NFM
2010, Washington D.C., USA, April 13-15, 2010. Proceedings, pages
161–170, 2010.

[37] Sebastian Steenbuck and Gordon Fraser. Generating unit tests for
concurrent classes. In Sixth IEEE International Conference on Software
Testing, Verification and Validation, ICST 2013, Luxembourg, Luxem-
bourg, March 18-22, 2013, pages 144–153, 2013.

[38] Richard N. Taylor, David L. Levine, and Cheryl D. Kelly. Structural
testing of concurrent programs. IEEE Trans. Software Eng., 18(3):206–
215, 1992.

[39] Valerio Terragni and Shing-Chi Cheung. Coverage-driven test code gen-
eration for concurrent classes. In Proceedings of the 38th International
Conference on Software Engineering, ICSE 2016, Austin, TX, USA, May
14-22, 2016, pages 1121–1132, 2016.

[40] Mandana Vaziri, Frank Tip, and Julian Dolby. Associating synchroniza-
tion constraints with data in an object-oriented language. In Proceedings
of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 2006, Charleston, South Carolina, USA,
January 11-13, 2006, pages 334–345, 2006.

[41] Christoph von Praun and Thomas R. Gross. Object race detection. In
Acm Sigplan Notices, volume 36, pages 70–82. ACM, 2001.

733

[42] Christoph von Praun and Thomas R. Gross. Static conflict analysis
for multi-threaded object-oriented programs. In ACM Sigplan Notices,
volume 38, pages 115–128. ACM, 2003.

[43] Chao Wang, Mahmoud Said, and Aarti Gupta. Coverage guided
systematic concurrency testing. In Proceedings of the 33rd International
Conference on Software Engineering, ICSE 2011, Waikiki, Honolulu ,
HI, USA, May 21-28, 2011, pages 221–230, 2011.

[44] Frank Wilcoxon. Individual Comparisons by Ranking Methods, pages
196–202. Springer New York, New York, NY, 1992.

[45] Cheer-Sun D. Yang, Amie L. Souter, and Lori L. Pollock. All-du-
path coverage for parallel programs. In Proceedings of ACM SIGSOFT
International Symposium on Software Testing and Analysis, ISSTA 1998,
Clearwater Beach, Florida, USA, March 2-5, 1998, pages 153–162,
1998.

[46] Yuan Yu, Tom Rodeheffer, and Wei Chen. Racetrack: efficient detection
of data race conditions via adaptive tracking. In ACM SIGOPS Operating
Systems Review, volume 39, pages 221–234. ACM, 2005.

[47] Michał Zalewski. AFL. http://lcamtuf.coredump.cx/afl/.
[48] Hong Zhu, Patrick A. V. Hall, and John H. R. May. Software unit test

coverage and adequacy. ACM Comput. Surv., 29(4):366–427, 1997.

734

	MAP-Coverage: A novel coverage criterion for testing thread-safe classes
	Citation
	Author

	MAP-Coverage: A Novel Coverage Criterion for Testing Thread-Safe Classes

